General Information

CAS Number: 102-71-6

Common Name: Triethanolamine

II. Physical-Chemical Data

A. Melting Point

This endpoint is not applicable. Polyphosphoric acid esters with triethanolamine, sodium salts is supplied as an aqueous solution.

OF DEC 12 DM 1: F1

B. Boiling Point

This endpoint is not applicable. Polyphosphoric acid esters with triethanolamine, sodium salts is supplied as an aqueous solution.

C. Vapor Pressure

Test Substance

Identity: Triethanolamine

Remarks: None

Method

Method: Measured

GLP: No Remarks: None

Results

Vapor PressureValue: 0.000477 Pa at 25°C

Remarks: None

Data Quality

Reliability: 2D

Remarks: Reliable with restrictions; endpoint was provided in

a reliable reference text.

Reference Howard, P. H. Handbook of Environmental Fate

and Exposure Data for Organic Compounds. Lewis

Publishers. 1990.

Other Arch proposes to develop data to allow the bridge

D. Partition Coefficient

No data exists for this endpoint for polyphosphoric acid esters with triethanolamine, sodium salts. Arch proposes to conduct a study according to OECD (TG 107) guidelines and GLP standards to obtain a value for this endpoint.

E. Water Solubility

No data exists for this endpoint for polyphosphoric acid esters with triethanolamine, sodium salts. Arch proposes to conduct a study according to OECD (TG 105) guidelines and GLP standards to obtain a value for this endpoint.

III. **Environmental Fate Endpoints**

A. Photodegradation – Entry 1 of 2

Test Substance

Identity: Triethanolamine

Remarks: None

Method

Method: Other (calculated)

GLP: Not stated Remarks: None

Results

Hydroxyl radicals

reaction:

OH Rate

1.04 E-12 cm³/molecule-sec Constant:

Degradation: 50% after 4 hours

Ozone reaction: No ozone reaction estimation

Remarks: None

Data Quality:

Reliability: 2D

Remarks: Reliable with restrictions. Endpoint was provided

in a reliable reference text.

Reference Atkinson, R. Inter. J. Chem. Knot 19: 799-828.

1987. Listed in: Howard, P. H. Handbook of

Environmental Fate and Exposure Data for Organic

Compounds. Lewis Publishers. 1990.

Other Arch proposes to develop data to allow the bridge

Entry 2 of 2 for Photodegradation

Test Substance

Identity: Triethanolamine

Remarks: None

Method

Method: Estimation

Model: Atmospheric oxidation

Remarks: None

Results

Hydroxyl radicals

reaction:

OH Rate

Constant: 110 E-12 cm³/molecule-sec

Half-Life: 1.16 hours

Ozone reaction: No ozone reaction estimation

Remarks: None

Data Quality:

Reliability: 2D

Remarks: Reliable with restrictions. Endpoint was provided

by computer modeling.

Reference: AopWin v.1.90. (EPI SuiteTM v.3.10).

Downloadable at

http://www.epa.gov/oppt/exposure/docs/episuitedl.htm. ©2000 U. S. Environmental Protection Agency.

Other Arch proposes to develop data to allow the bridge

B. Stability in Water

No data exists for this endpoint for polyphosphoric acid esters with triethanolamine, sodium salts. Arch proposes to conduct a study according to OECD (TG 111) guidelines and GLP standards to obtain a value for this chemical. Confirmation of the hydrolysis of polyphosphoric acid esters with triethanolamine, sodium salts will allow bridging of this chemical to triethanolamine for this endpoint.

C. Biodegradation – Entry 1 of 2

Test Substance

Identity: Triethanolamine
Purity: Not stated
Remarks: None

Method

Method: OECD Guideline 302B "Inherent biodegradability:

Modified Zahn-Wellens Test"

Test type: Aerobic
GLP: Not stated
Year: 1979
Contact time: 8 days

Inoculum: Activated sludge

Concentration: 400 mg/l Remarks: None

Results

Degradation: 82% after 8 days

Results: Inherently biodegradable

Remarks: None

Conclusions The biodegradability of the test substance has been

adequately characterized.

Data Quality

Reliability: 1A

Remarks: Reliable without restrictions; OECD guideline

study.

Reference Gerike, P., Fischer, W. K. 1979. A Correlation

Study of Biodegradability Determinations with Various Chemicals in Various Tests. ECETOX.

Environ. Safety. 3: 159-173.

Other Arch proposes to develop data to allow the bridge

Entry 2 of 2 for Biodegradation

Test Substance

Identity: Triethanolamine
Purity: Not stated
Remarks: None

Method

Method: OECD Guideline 302 B

Test type: Aerobic
GLP: Not stated
Year: 1980
Contact time: 14 days
Concentration: 1000 mg/l

Inoculum: Domestic sewage

Remarks: None

Results

Degradation: 89 % after 14 days Results: Inherently biodegradable

Kinetic: Not stated Breakdown products: Not stated Remarks: None

Conclusions The biodegradability of the test substance has been

adequately characterized.

Data Quality

Reliability: 1A

Remarks: Reliable without restrictions; OECD guideline

study.

Reference Zahn, R. and Wellens, H. 1980. Examination of

Biological Degradability through the Batch method – further Experience and New Possibilities of Usage. Z. Wasser Abwasser Forsch. 13: 1-7.

Other Arch proposes to develop data to allow the bridge

D. Transport between Environmental Compartments (Fugacity)

Test Substance

Identity: Triethanolamine

Remarks: None

Method

Method: Calculation according to Mackay, Level I

Remarks: Data used:

Molecular mass: 149.2

Log10 octanol/water partition coefficient: -1.59 Water solubility: 10,000 mg/l (As triethanolamine is fully miscible with water, an estimated value as

shown was used.)

Vapor pressure: 0.000477 Pa at 25°C Amount of chemical dispersed: 10 moles

Results

Distribution to each

medium Percent Distribution

 Air
 <0.001</td>

 Water
 99.999

 Soil
 <0.001</td>

 Sediment
 <0.001</td>

Remarks: None

Reference Comber, M. I. H. Zeneca Brixham Environmental

Laboratory. Letter to M. G. Penman. ICI Chemicals

& Polymers Limited. 1993.

Other Arch proposes to develop data to allow the bridge

IV. Ecotoxicity

A. Acute Toxicity to Fish – Entry 1 of 2

Test Substance

Identity: Triethanolamine
Purity: Not stated
Remarks: None

Method

Method: Static

Test type: 24-hour LC₅₀

Analytical

monitoring: No data

Organism: Carassius auratus (goldfish, freshwater species)

Year: 1979
GLP: No data
Statistical methods: None

Remarks: The test procedure was in accordance with

American Public Health Association guideline. Goldfish of uniform length (average 6.2±0.7 cm) and weight (average 3.3 g) and in good health were used for the assay. Triethanolamine was tested at a series of concentrations. In each test 10 fish were

exposed in 25 liters of solution (pH - 9.9;

temperature -20° C) contained in all glass tanks. The solutions were aerated throughout the test

period.

Results

 LC_{50} (24 hours): > 5000 mg/l Remarks: None

Conclusion The acute toxicity of the test substance has been

adequately characterized.

Data Quality

Reliability: 2A

Remarks: Reliable with restrictions; Acceptable, well-

documented publication report which meets basic

scientific principles.

Reference Birdie, A. L., C. J. M. Wolff and M. Winter. 1979.

The Acute Toxicity of Some Petrochemicals to

Goldfish. Water Res. 13: 623-626.

Other

Arch proposes to develop data to allow the bridge for this endpoint to be made from existing data or information for triethanolamine to polyphosphoric acid esters with triethanolamine, sodium salts.

Entry 2 of 2 – Acute Toxicity to Fish

Test Substance

Identity: Triethanolamine

Purity: 97 % Remarks: None

Method

Method: Not stated
Test type: Acute
GLP: No data
Year: 1987

Species: Pimephales promelas

Analytical monitoring:Yes

Exposure period: 96 hours Statistical methods: None

Remarks: The conditions of the test solutions were as

follows: pH - 7.8; temperature -25.7°C; dissolved

oxygen - 7.3 mg/l.

Results

LC₅₀ (96 hours): 11,800 mg/l

Remarks: The affected fish lost schooling behavior, were

hyperactive and darkly colored, had increased respiration and lost equilibrium prior to death.

Conclusion The acute toxicity of the test substance has been

adequately characterized.

Data Quality

Reliability: 2A

Remarks: Reliable with restriction; Acceptable, well-

documented publication report which meets basic

scientific principles.

Reference Geiger, D. L., L. T. Brooks and D. J. Call. Acute

Toxicities for Organic chemicals to Fathead Minnows (*Pimephales promelas*). Volume V. Center for lake Superior Environmental Studies, University of Wisconsin – Superior. 1984-88.

Other Arch proposes to develop data to allow the bridge

B. Acute Toxicity to Daphnids – Entry 1 of 2

Test Substance

Identity: Triethanolamine
Purity: Not stated
Remarks: None

Method

Method: DIN 38412 part 11

Test type: Acute static GLP: No data Year: 1982

Species: Daphnia magna

Analytical monitoring:No

Exposure period: 24 hours

Statistical methods: No statistics applied to data

Remarks: Test medium was not neutralized. Concentrations

were nominal.

Results

EC₅₀ (24 hours): 1386 mg/l EC₁₀₀ (24 hours): 2455 mg/l

Conclusions The 24-hour acute toxicity of the test substance to

Daphnia magna has been adequately characterized.

Data Quality

Reliability: 2A

Remarks: Reliable with restrictions; Acceptable, well-

documented publication report which meets basic

scientific principles.

Reference Bringmann, G. and R. Kuhn. 1982. Z. Wasser

Abwasser Forsch. 15: 6-11.

Other Arch proposes to develop data to allow the bridge

Acute Toxicity to Daphnids – Entry 2 of 2

Test Substance

Identity: Triethanolamine
Purity: Not stated
Remarks: None

Method

Method: Not stated
Test type: Acute static
GLP: No data
Year: 1987

Species: Daphnia magna

Analytical monitoring:No

Exposure period: 24 hours

Statistical methods: No statistics applied to data

Remarks: Test was conducted at pH 7.6-7.7 and 20-22°C.

Results

EC₅₀ (24 hours): 1390 mg/l

Conclusions The 24-hour acute toxicity of the test substance to

Daphnia magna has been adequately characterized.

Data Quality

Reliability: 2A

Remarks: Reliable with restrictions; Acceptable, well-

documented publication report which meets basic

scientific principles.

Reference Bringmann, G. and R. Kuehn. 1987. Results of the

damaging effect of water pollutants on *Daphnia magna*. Z. Wasser Abwasser Forsch. 20: 161-166.

Other Arch proposes to develop data to allow the bridge

C. Acute Toxicity to Aquatic Plants (Algae) – Entry 1 of 2

Test Substance

Identity: Triethanolamine
Purity: Not stated
Remarks: None

Method

Method: DIN 38412, Part 9

Test type: Acute static growth inhibition

GLP: Not stated Year: 1986

Species: Scenedesmus subspicatus

Analytical monitoring:No

Exposure period: 96 hours

Statistical methods: No statistics applied to data

Remarks: The assay was conducted with and without

neutralized triethanolamine. Concentrations were

nominal.

Results

Conclusions The 96-hour acute toxicity of the test substance to

Scenedesmus subspicatus has been adequately

characterized.

Data Quality

Reliability: 2A

Remarks: Reliable with restrictions; Acceptable, well-

documented publication report which meets basic

scientific principles.

Reference Amann, W. and A. Stainhauser. 1986.

Umweltforschungsplan des BMI, UFOPLAN Nr. 102 05 308. im Auftrag des Umweltbundesamtes.

Other Arch proposes to develop data to allow the bridge

Acute Toxicity to Aquatic Plants (Algae) – Entry 2 of 2

Test Substance

Identity: Triethanolamine
Purity: Not stated
Remarks: None

Method

Method: DIN 38412, Part 9

Test type: Acute static growth inhibition

GLP: Not stated Year: 1990

Species: Scenedesmus subspicatus

Analytical monitoring:No

Exposure period: 72 hours

Statistical methods: No statistics applied to data

Remarks: None

Results

EC₁₀: 110 mg/l EC₅₀: 750 mg/l

Conclusions The 72-hour acute toxicity of the test substance to

Scenedesmus subspicatus has been adequately

characterized.

Data Quality

Reliability: 2A

Remarks: Reliable with restrictions; Acceptable, well-

documented publication report which meets basic

scientific principles.

Reference Kuhn, R. and M. Pattard. 1990. Results of the

Harmful Effects of Water Pollutants to Green Algae

(Scenedesmus subspicatus) in the Cell

Multiplication Inhibition Test. Water. Res. 24: 31-

38.

Other Arch proposes to develop data to allow the bridge

V. Mammalian Toxicity

A. Acute Toxicity – Entry 1 of 5

Test Substance

Identity: Triethanolamine

Purity: 91.8 % triethanolamine; 6.1 % diethanolamine

Remarks: None

Method

Method/guideline

followed: Not stated
Type: Oral toxicity
GLP: No data
Year: 1973

Species/Strain: Rat/strain not stated

Sex: Male/Female

Number of animals/

sex/dose: 5

Vehicle: Not stated

Route of

administration: Oral (gavage)

Remarks: Five dose groups of 10 rats each were administered

the test substance between 3.64 and 10.0 g/kg. Animals were observed for mortality and clinical

signs for 14 days.

Results

Value: LD_{50} is 7.39 g/kg

Mortality rate: Not stated

Remarks: There was slight to moderate degrees of

hemorrhagic rhinitis in rats administered doses

equal to or greater than 7.14 g/kg.

Conclusions

Remarks: The acute oral LD₅₀ is 7.39 g/kg.

Data Quality

Reliability: 2D

Remarks: The study is reliable with restrictions. Data appear

solid, but report lacks details consistent with a

guideline study.

Reference Cosmetic Ingredient Review. 1983. Final Report on

the Safety Assessment of Triethanolamine, Diethanolamine and Monoethanolamine. J. Am.

Coll. Toxicol. 2 (7): 173-235.

Other Arch proposes to develop data to allow the bridge

Acute Toxicity – Entry 2 of 5

Test Substance

Identity: Triethanolamine
Purity: Purity not stated

Remarks: None

Method

Method/guideline

followed: Not stated
Type: Oral toxicity
GLP: No data
Year: 1951

Species/Strain: Rat/strain not stated

Sex: Males

Number of animals/

sex/dose: 6 animals/dose

Vehicle: Water

Route of

administration: Oral (gavage)

Remarks: None

Results

Value: LD_{50} is 9.11 g/kg

Mortality rate: Not stated

Remarks: No clinical information given.

Conclusions

Remarks: The acute oral LD₅₀ is 9.11 g/kg.

Data Quality

Reliability: 2D

Remarks: The study is reliable with restrictions. Data appear

solid, but report lacks details consistent with a

guideline study.

Reference Smyth, H. F., Carpenter, C. P. and Weil, C. S. 1951.

Range-finding toxicity data: List IV. Arc. Ind.

Hyg. Occ. Med. 4: 119-22.

Other Arch proposes to develop data to allow the bridge

Acute Toxicity – Entry 3 of 5

Test Substance

Identity: Triethanolamine
Purity: Commercial grade

Remarks: None

Method

Method/guideline

followed: Not stated
Type: Oral toxicity
GLP: No data
Year: 1940

Species/Strain: Rat/strain not stated

Sex: Not stated

Number of animals/

sex/dose: 10 animals/dose

Vehicle: Test article was administered undiluted.

Route of

administration: Oral (gavage)
Dose range: 1 to 12 g/kg

Remarks: None

Results

Value: LD₅₀ is 8 g/kg Mortality rate: Not stated

Remarks: The average survival time after administration was

24 hours. The author states that mortality was probably the result of the alkalinity of the material. The gross pathological change was confined to the gastrointestinal tract. The stomach was distended, congested and showed hemorrhagic areas. The blood vessels of the large and small intestines were distended. Liver, kidney, spleen and lungs showed no gross pathological changes. Before death, most of the animals had an intense diarrhea and were

completely prostrate.

Conclusions

Remarks: The acute oral LD_{50} is 8 g/kg.

Data Quality

Reliability: 2D

Remarks: The study is reliable with restrictions. Data appear

solid, but report lacks details consistent with a

guideline study.

Reference Kindsvatter, V. H. 1940. Acute and chronic toxicity

of triethanolamine. J. Indus. Hyg. Toxicol. 22 (6):

206-212.

Other Arch proposes to develop data to allow the bridge

Acute Toxicity – Entry 4 of 5

Test Substance

Identity: Triethanolamine
Purity: Purity not stated

Remarks: None

Method

Method/guideline

followed: Per method used for inhalation toxicity at BASF

Type: Inhalation toxicity

GLP: No Year: 1966

Species/Strain: Rat/strain not stated

Sex: Not stated

Number of animals/

sex/dose: Not stated Vehicle: None

Route of

administration: Inhalation

Remarks: The animals were exposed to a saturated

atmosphere of triethanolamine for 8 hours at 20° C.

Results

Value: LC_{50} is greater than a saturated atmosphere.

Mortality rate: No mortality.

Remarks: No clinical information given.

Conclusions

Remarks: The acute inhalation LC_{50} is greater than a saturated

atmosphere.

Data Quality

Reliability: 2D

Remarks: The study is reliable with restrictions. Data appear

solid, but report lacks details consistent with a

guideline study.

Reference BASF AG. 1966 Abteilung Toxikologie.

Unpublished report. ZST-Nr. SV/307.

Other

Arch proposes to develop data to allow the bridge for this endpoint to be made from existing data or information for triethanolamine to polyphosphoric acid esters with triethanolamine, sodium salts.

Acute Toxicity – Entry 5 of 5

Test Substance

Identity: Triethanolamine

Purity: 91.8 % triethanolamine; 6% diethanolamine

Remarks: None

Method

Method/guideline

followed: Not stated
Type: Dermal toxicity

GLP: No Year: 1973

Species/Strain: Rat/strain not stated

Sex: Not stated

Number of animals/

sex/dose: Not stated Vehicle: None

Route of

administration: Dermal Remarks: None

Results

Value: LD_{50} is greater than 2 g/kg

Mortality rate: None

Remarks: No clinical information given.

Conclusions

Remarks: The acute dermal LD_{50} is greater than 2 g/kg.

Data Quality

Reliability: 2D

Remarks: The study is reliable with restrictions. Data appear

solid, but report lacks details consistent with a

guideline study.

Reference Cosmetic Ingredient Review. 1983. Final Report on

the Safety Assessment of Triethanolamine, Diethanolamine and Monoethanolamine. J. Am.

Coll. Toxicol. 2 (7): 173-235.

Other Arch proposes to develop data to allow the bridge

B. Genetic Toxicity – Entry 1 of 3

Test Substance

Identity: Triethanolamine

Purity: Reported as reagent grade

Remarks: None

Method

Method: Ames/Salmonella Bacterial Point Mutation Assay

Type: Reverse mutation assay

Test system: Bacteria
GLP: Not stated
Year: 1982

Species/Strain: Salmonella typhimurium/ TA98 and TA100. Metabolic activation: Test conducted with and without metabolic

activation.

Concentrations

tested: 0 to 20,000 μ g/plate

Remarks: Triethanolamine was dissolved in 0.1 ml of distilled

water and added to 0.5 ml of S9 mix or 0.1 M sodium phosphate buffer (pH 7.4) with 0.1 ml of bacterial culture. The mixtures were incubated for 20 minutes at 37° C with shaking. It was then mixed rapidly with 2 ml of molten soft agar containing 0.1 μ mole of L-histidine and biotin, poured onto minimal glucose agar plates and

incubated for 2 days at 37° C. S9 mix was prepared form the post-mitochondrial supernatant of the liver of rats that had been pretreated with polychlorinated

biphenyl for induction of microsomal enzymes. Concurrent solvent (water) and positive controls (without activation – 4-nitroquinoline 1-oxide; with activation – benzo[a]pyrene) were tested with and

without the metabolic activation systems.

Results There was no difference between controls and all

concentrations tested in revertant colonies/plate

with or without metabolic activation.

Conclusions

Remarks: The test substance did not induce mutations in this

test system with and without metabolic activation.

Data Quality

Reliability: 1B

Remarks: Reliable without restriction; comparable to

guideline study.

Reference Inoue, K., T. Sunakawa, K. Okamoto and Y.

Tanaka. 1982. Mutagenicity tests and in vitro

transformation assays on triethanolamine. Mut. Res.

101: 305-313.

Other Arch proposes to develop data to allow the bridge

Genetic Toxicity – Entry 2 of 3

Test Substance

Identity: Triethanolamine

Purity: Reported as practical grade

Remarks: None

Method

Method: Ames/Salmonella Bacterial Point Mutation Assay

Type: Reverse mutation assay

Test system: Bacteria
GLP: Not stated
Year: 1986

Species/Strain: Salmonella typhimurium/TA98, TA100, TA 1535

and TA 1537.

Metabolic activation: Test conducted with and without metabolic

activation.

Concentrations

tested: 0 to 3,333 μ g/plate

Remarks: Male Sprague-Dawley rats were used to prepare the

S-9 fraction. Liver microsomal enzymes were induced with polychlorinated biphenyl (Arochlor 1254). The S-9 mix was prepared immediately prior to the assay and consisted of the following per ml: 0.04 M β -nicotinamide adenine dinucleotide

 $0.04~M~\beta$ -nicotinamide adenine dinucleotide phosphate, 0.10~ml; 0.05~M~glucose-6-phosphate, 0.10~ml; $1.0~M~NaH_2PO_4$, pH 7.4), 0.10~ml; and distilled water, 0.56~ml. Triethanolamine was assayed in the preincubation assay. To each test tube maintained at $37^{\circ}~C$ was added in the following order: 0.5~ml of S-9 mix or $0.1~M~PO_4$ buffer (pH 7.4), 0.05~ml of the overnight culture, and 0.05~ml of solvent or chemical dilution. The mixture was

mixed and allowed to incubate without shaking at 37° C for 20 minutes, at which time 2.0 ml of molten top agar supplemented with 0.5 mM L-histidine and 0.5 mM D-biotin were added. The contents of the tubes were mixed and pured onto 25 ml of minimal glucose bottom agar in 15 x 100-mm

plastic petri dishes. When the top agar has

solidified, the plates were nverted and incubated at 37° C for 48 hours. Concurrent solvent (water) and positive controls (without activation – sodium azide

for TA 1535 and TA 100, 4-nitro-o-

phenylenediamine for TA 98, 9-aminoacridine for TA 1537; with activation – 2-aminoanthracene for

all strains) were tested with and without the

metabolic activation systems.

Results There was no difference between controls and all

concentrations tested in revertant colonies/plate

with or without metabolic activation.

Conclusions

Remarks: The test substance did not induce mutations in this

test system with and without metabolic activation.

Data Quality

Reliability: 1B

Remarks: Reliable without restriction; comparable to

guideline study.

Reference Mortelmans, K., S. Haworth, T. Lawlor, W. Speck,

B. Tainer and E. Zeiger. 1986. Salmonella

Mutagenicity Tests: II. Results from the Testing of 270 Chemicals. Environ. Mut. 8, Supplement 7: 1-

119.

Other Arch proposes to develop data to allow the bridge

Genetic Toxicity – Entry 3 of 3

Test Substance

Identity: Triethanolamine

Purity: Reported as reagent grade

Remarks: None

Method

Method: That of Ishidate and Odashima (1977) as reported in

Mutation Research 48: 337-354.

Type: Cytogenetic assay

Test system: Chinese hamster lung cells

GLP: Not stated Year: 1982 Species/Strain: CHL cells

Concentrations

tested: $0 \text{ to } 100 \,\mu\text{g/ml}$

Remarks: Inocula of 2 x 10⁴ CHL cells suspended in Eagle's

MEM supplemented with 10% fetal calf serum were seeded into 60-mm petri dishes. After cultivation for 3 days, a test chemical was then added and incubation was continued for 24 or 48 hours. Colcemid was added to the media at a final concentration of 0.2 μ g/ml for the last 2 hours of incubation. After trypsinization, the cells were incubated in hypotonic solution (0.075-M KCl) for 15 minutes at 37° C. The cells were then fixed with ice-cold fixative (methanol:glacial acetic acid, 3:1) with 3 changes of the solution. A few drops of the cell suspension were placed on a slide on wet blotting paper, and the slide was stained with

Giemsa. At each concentration of the chemical, 100 metaphase cells were examined for chromosomal aberrations. The controls consisted of a tissue culture control, vehicle control (DMSO) and a positive control (N-methyl-N'-nitro-N-

nitrosoguanidine.

Results There was no difference between controls and all

concentrations tested in chromatid gaps, chromatid

breaks, chromatid exchanges or number of

polyploid cells.

Conclusions

Remarks: The test substance did not induce chromosome

aberrations in this test system with and without

metabolic activation.

Data Quality

Reliability: 1B

Remarks: Reliable without restriction; comparable to

guideline study.

Reference Inoue, K., T. Sunakawa, K. Okamoto and Y.

Tanaka. 1982. Mutagenicity tests and in vitro

transformation assays on triethanolamine. Mut. Res.

101: 305-313.

Other Arch proposes to develop data to allow the bridge

C. Repeated Dose Toxicity – Entry 1 of 2

Test Substance

Identity: Triethanolamine

Purity: 88.5 % triethanolamine and 6 % diethanolamine

Remarks: None

Method

Method/guideline

followed: Not stated
Test type: Oral
Year: 1976
GLP: No data
Species: Rat

Strain: Not stated

Number and sex: 20 males and 20 females/group. Animals were

exposed to 4 dose levels ranging from 0 to 1000

mg/kg.

Route of

administration: Oral (incorporation into the feed)

Duration of test: 91 days

Control group

and treatment: No information on control group specified

Post-exposure

observation period: Not specified

Methods: Animals were dosed for 91 days and then evaluated

for hematologic effects and pathological change.

Results

NOAEL: 1000 mg/kg

Remarks: No gross or histopathological evidence of a

treatment-related effect. No significant hematologic

effects.

Conclusions

Remarks: Triethanolamine is of low toxicity from repeated

exposure up to 91 days with a NOAEL of at least

1000 mg/kg.

Data Quality

Reliability

(Klimisch): 2B

Remarks: Reliable with restrictions. Basis data provided.

Reference: CTFA. 1976. Submission of data by CTFA (2-5-

55). 91 Day subchronic oral toxicity using

triethanolamine. Cited in CIR, 1983.

Other

Arch proposes to develop data to allow the bridge for this endpoint to be made from existing data or information for triethanolamine to polyphosphoric acid esters with triethanolamine, sodium salts.

Repeated Dose Toxicity – Entry 2 of 2

Test Substance

Identity: Triethanolamine
Purity: 99 % reagent grade

Remarks: None

Method

Method/guideline

followed: Not stated
Test type: Oral
Year: 1986
GLP: No data
Species: Rat

Strain: Fischer 344

Number and sex: 50 animals/sex/group

Route of

administration: Oral (incorporation into the drinking water)

Duration of test: 104 weeks

Dose level: 1 or 2 % triethanolamine in the drinking water

which, based on water consumption and body weight, resulted in a dose of 425 to 475 mg/kg in the low dose group and 900 to 925 mg/kg in the

high dose group.

Control group

and treatment: Concurrent control group (50 rats/sex) administered

the solvent (water).

Post-exposure

observation period: 9 weeks

Methods: Animals were randomly divided into 3 groups, each

consisting of 50 rats/sex. Rats were given the test article solutions ad libitum. At week 60 loss of body weight gain and mortality rate increased in the

females in the 2 % group. Therefore, the

concentration of triethanolamine was reduced by

one-half for the females in this group.

Triethanolamine solutions were freshly prepared once/week and the amount of solution consumed was measured to calculate the triethanolamine intake. All animals were observed daily and clinical signs and mortality were recorded. Body weights were measured once/week during the first 13 weeks of the study and then once every 4 weeks. At the end of the treatment and observation periods

the following organs were evaluated for histopathological change: brain, spinal cord, peripheral nerves, pituitary, thyroid, thymus, lungs, heart, liver spleen, pancreas, adrenals, kidneys, urinary bladder, salivary glands, tongue, esophagus, stomach, duodenum, jejunum, ileum, cecum, colon, rectum, gonads, accessory genital organs, mammary glands, lymph nodes, skin, musculature, sternum, femur, eyes, and nasal cavity.

Results

NOAEL: 1000 mg/kg

Remarks: None of the treatment groups showed a significant

increase in the incidence of any specific tumors over the corresponding control group values. Treatment-related nonneoplastic lesions were observed in the kidneys consisting of mineralization of the renal papilla, nodular hyperplasia of the pelvic mucosa and pyelonephritis with or without papillary necrosis. No other nonneoplastic treatment-related histopathological change was

noted in any other organs.

Conclusions

Remarks: Triethanolamine is not carcinogenic and it does not

produce histopathological change to the

reproductive organs of either male or female rats when administered in the drinking water at dose

levels up to approximately 900 mg/kg.

Data Quality

Reliability

(Klimisch): 2A

Remarks: Reliable with restrictions. Acceptable, well-

documented publication/study report that meets

basic scientific principles.

Reference: Maekawa, A., H. Onodera, H. Tanigawa, K. Furuta,

J. Kanno, C. Matsuoka, T. Ogiu, and Y. Hayashi. 1986. Lack of Carcinogenicity of Triethanolamine in F344 Rats, J. Toxicol. Environ. Health 19:345-

357.

Other Arch proposes to develop data to allow the bridge

D. Reproductive Toxicity

No studies have been conducted to specifically evaluate the effect of triethanolamine on reproductive performance. However, based on consideration of the repeat dose toxicity studies of at least 90 days duration, there were no abnormalities noted in the histopathological examination of reproductive organs. This fact, and the lack of effects on development, allow the conclusion that triethanolamine would not be expected to produce toxicity to reproductive performance and fertility. The OECD SIDS Initial Assessment Report (Report) concurs with this opinion. The Report states, "Although there were no studies available on fertility, there were no abnormalities noted in the histopathological examination of reproductive organs (testes and ovaries) in the 90-day oral and dermal toxicity studies. Triethanolamine is not a developmental or reproductive toxin."

E. Developmental Toxicity

Test Substance

Identity: Triethanolamine

Purity: Purest grade commercially available confirmed by

gas chromatography (FID).

Remarks: None

Method

Method/guideline

followed: Chernoff-Kavlock teratogenicity screening test

Test type: Oral
GLP: Yes
Species: Mouse
Strain: CD-1

Number and sex: 50 mated females in Phase III

Route of

administration: Oral gavage

Duration of test: Through day 3 of post partum.

Dose level: 1125 mg/kg

Exposure period: Exposure of females on days 6-15 of gestation.

Frequency of

treatment: The test article was administered daily on days 6-15

of gestation.

Control group

and treatment: Yes. Identical dosing regimen treatment group with

vehicle.

Methods: This study was conducted in 3 phases. Phases I and

II were range finding studies designed as a method to identify the appropriate dose for phase III. Phase I was conducted using non-pregnant animals with administration of the triethanolamine daily for 5 consecutive days. Phase II (4 animals/dose) was conducted using pregnant animals with treatment on gestation 6-15. In phase III the animals were evaluated for the following: maternal body weight,

maternal mortality and signs of toxicity,

implantation sites, pup counts at birth with mortality and pup weight (recorded at birth and on day 3

postpartum).

Results As a result of the mortality rate in the phase II pilot

study, the dose chosen for phase III was 1125

mg/kg.

NOAEL (NOEL): 1125 mg/kg

Remarks: Oral administration of 1125 mg/kg triethanolamine

to pregnant mice did not affect maternal mortality, the number of viable litters, length of gestation, litter size, percent survival of the pups or birth

weight or weight gained by the pups.

Data Quality

Reliability

(Klimisch): 1C

Remarks: Valid with restrictions; Study was conducted

according to an established procedure used for screening chemicals for developmental toxicity.

Reference: Pereira, M., P. Barnwell and W. Bailes. 1987.

Screening of Priority Chemicals for Reproductive Hazards. Monoethanolamine, Diethanolamine and Triethanolamine. Environmental Health Research and Testing, Inc. Cincinnati, OH. Project # 200-84-

2735.

Other Arch proposes to develop data to allow the bridge